Jump to content
Hundeforum Der Hund
mikesch0815

DER Thread für Mathe-Nerds

Empfohlene Beiträge

Ungelöste Probleme der Mathematik:

https://de.wikipedia.org/wiki/Millennium-Probleme

 

Perelman hat eines davon gelöst und der Typ ist echt interessant. Da staunt man natürlich auch beim Handelsblatt, dass jemand ungewollt eine Million hinterher getragen bekommt und sie jedesmal ablehnt. :)

https://www.handelsblatt.com/technik/forschung-innovation/auszeichnung-abgelehnt-mathe-genie-verzichtet-auf-eine-million-dollar/3478466.html

 

https://de.wikipedia.org/wiki/Grigori_Jakowlewitsch_Perelman

"Bereits im Jahr 2000 hatte das Clay Mathematics Institute die Poincaré-Vermutung unter die sieben bedeutendsten ungelösten mathematischen Probleme gezählt und für die Lösung (unter der Bedingung ihrer Veröffentlichung in einer Fachzeitschrift) einen Preis von einer Million US-Dollar ausgelobt. Perelman, der seine Arbeit im Internet publizierte, zeigte bisher weder Interesse daran, seinen Beweis in einer Fachzeitschrift zu veröffentlichen, noch daran, den Preis für sich zu beanspruchen.

Das Clay-Institut in Cambridge, Massachusetts, USA, das auch die Überprüfung des Beweises durch Tian und Morgan sowie ein weiteres Team finanzierte, sprach Perelman trotzdem nach eingehenden Prüfungen am 18. März 2010 das Preisgeld für die erste Lösung eines der sieben Millenniums-Probleme zu. Dieser lehnte die Auszeichnung jedoch erneut ab. Er begründete diese Entscheidung mit seiner Unzufriedenheit mit der Organisation der mathematischen Gesellschaft, da ihm deren Entscheidungen nicht gefallen. Er halte sie für ungerecht."

Diesen Beitrag teilen


Link zum Beitrag

Ein LK meiner Schule hatte mal einen Perelman-Fanclub aufgemacht. Die waren so begeistert vom Waldschrat..

 

 

so weit

Maico

Diesen Beitrag teilen


Link zum Beitrag

@Holo

vor 19 Stunden schrieb Laikas:

Wenn ich könnte, wie ich wollte ... wüsste ich sofort, wie man dieses Matherätsel hier ausrechnet. Dabei ist das endlich mal was Nützliches :):

 

n Freunde erzählen uns jeder einen anderen Witz. Den Witz merken wir uns, aber nicht den Erzähler. Nun erzählen wir jedem dieser Freunde genau einen der n Witze, der uns gerade einfällt, aber jedem einen anderen. Wie wahrscheinlich ist es, dass wir keinem seinen eigenen Witz erzählen?

 

Bei meiner Aufgabe steht folgender Lösungsweg: man sucht hier "nach der Wahrscheinlichkeit, dass eine zufällige Permutation keinen Fixpunkt hat".

 

Im Aufgabenheft wird vorher eine "Permutation" als bijektive Abbildung einer endlichen Menge auf sich selbst definiert. In diesem Fall ist das die Abbildung der Witzeerzähler auf die Empfänger des Witzes (sind ja dieselben, die den Witz hören und es werden alle genau einmal beglückt). Ein Fixpunkt wäre jetzt, dass ein Witzeerzähler auf sich selbst abgebildet wird, also seinen eigenen Witz hört. Z. B. kann man

 

a b c d e f g h - n=8 Witzeerzähler zuordnen zum Buchstaben genau darunter

f c d e a b g h - n=8 Witzeempfänger.

 

Hier sind Witzeerzähler g und h gelangweilt, weil sie ihren eigenen Witz hören = Fixpunkte der Abbildung (z. B. Buchstabe g geht zu g). Die Anzahl aller dieser möglichen Zuordnungen Erzähler zu Empfänger beträgt n!, wie hier beschrieben:

https://de.wikipedia.org/wiki/Permutation#Permutation_ohne_Wiederholung

 

Bei n! Varianten können mal alle ihren eigenen Witz hören, nur einige oder keiner und das in allen möglichen Kombinationen. Nun heißt es in der Lösung: wenn D(n) die Anzahl der fixpunktfreien Permutationen ist (keiner hört seinen eigenen Witz) und wir davon ausgehen, dass alle Permutationen gleich wahrscheinlich sind, dann ist die gesuchte Wahrscheinlichkeit:

 

D(n)/n!

 

Die Anzahl der fixpunktfreien Permutationen D(n) kann man mit einer Formel ausrechnen :

https://de.wikipedia.org/wiki/Fixpunktfreie_Permutation#Anzahl

 

Fixpunkt.png.701eb800e89ea21e1eede0dc95e951c2.png

(Die Herleitung dieser Formel über das Inklusions-Exklusions-Prinzip = Siebformel steht auch gleich darunter; meine Witzeaufgabe war ein Beispiel zur Anwendung dieser Siebformel :ph34r:)

 

Die gesuchte Wahrscheinlichkeit war ja jetzt

D(n)/n!

Also setzt man in D(n)/n! die obige Formel statt D(n) ein. Dann kann man n! wegkürzen und es bleibt der Anteil der fixpunktfreien Permutationen an allen insgesamt:

 

Fixpunkt2.png.c220d5abf510bf400198ff981862edc1.png

 

In meinem Aufgabenheft ist das nun die Wahrscheinlichkeit dafür, dass keiner der Freunde seinen eigenen Witz zu hören bekommt. In Zahlen kann man das auch genauer ausdrücken, denn wenn man n gegen unendlich streben lässt (was wir nicht hoffen wollen :ph34r:), dann kann man in der Matheformelsammlung das hier benutzen und k = i und x = -1 setzen:

 

Eulersch.png.7cef0d600401c9e25080d5b930aa1bf0.png

 

Das e ist hier die Eulersche Zahl. Dann erhält man also für unsere Wahrscheinlichkeit mit unendlich vielen Witzen den Grenzwert:

 

Eulersche Zahl mit Exponent -1 = 1/Eulersche Zahl = 1 / 2,71828..., also ungefähr 0,36787.

 

Das ist die Wahrscheinlichkeit in Zahlen. Sagt auch Wikipedia https://de.wikipedia.org/wiki/Fixpunktfreie_Permutation#Anzahl

"Für n ≥ 4 liegt damit der Anteil der fixpunktfreien Permutationen bei etwa 37 % (siehe auch 37%-Regel)."

-------------

 

Hier ist so eine Aufgabe mit Wichtelgeschenken, nur fragt man hier anders herum: "Es kann jedoch passieren, dass jemand zufällig sein eigenes Geschenk bekommt. Für die betreffende Person wäre es mit der Überraschung vorbei. Doch wie wahrscheinlich ist dieser Fall bei einer Gruppe von n Personen?"

https://de.wikipedia.org/wiki/Prinzip_von_Inklusion_und_Exklusion#Beispiel

Ergebnis 63,2%.

 

-----------

 

Schönes Video zum Thema:

 

 

Diesen Beitrag teilen


Link zum Beitrag

Ich lese mich ja gerade so etwas in Tetration (und soweit mein Schädel es zu begreifen mag, Pentation und Hexation) ein.

 

Wie geil sind den Superlogarithmen und Superwurzeln... slog(x) und Co? Röstet ja komplett den Verstand aus! 

Abgesehen davon, daß schon eine Tetration ordentlich die Rübe brutzelt... ³3 ist eine unglaublich gigantische Zahl, gegenüber der die Anzahl der Elementarteilchen im Universum ein Fliegenschiss ist.

 

(³3 bedeutet 3 hoch 3 hoch 3 hoch 3, wobei von rechts potenziert wird.)

 

Boah!

 

so weit

Maico

 

 

Diesen Beitrag teilen


Link zum Beitrag

Paul Erdős scheint ein interessanter Mensch gewesen zu sein. Jemand beschrieb ihn als Mathe-Maniac, der keine Zeit durch Schlafen verlieren wollte und deshalb Aufputschmittel nahm. Er hat unter den Mathematikern die größte Anzahl an Veröffentlichungen (gemeinsam mit anderen) und überraschte Mathematikerkollegen auch schon mal damit, dass er bei ihnen auf dem Sofa schlief, um so bald wie möglich weiter zu diskutieren.

 

Die Kundenrezensionen für dieses Buch lesen sich auch für Nicht-Mathematiker sehr vielversprechend:

Amazon: Der Mann, der die Zahlen liebte. Die erstaunliche Geschichte des Paul Erdös und die Suche nach der Schönheit in der Mathematik

Diesen Beitrag teilen


Link zum Beitrag

Ich nehme mal an, daß die meisten schon wissen was ein kartesisches Koordinatensystem ist. 

 

Ich bin seit gestern abend ja der Meinung, daß ein projektives Koordinatensystem viel abgefahrener ist.

koordinaten.gif.5360d165dfe9ecf16da45d4241f38f0a.gif

Ich müsste nur noch eine Software finden, die auf solche Koordinatensysteme Funktionen plotten kann. Die paar Beispiele gestern in der Vorlesung fand ich cool. Und diese intelligente Idee, Unendlichkeit tatsächlich in einem Koordinatensystem zeichnen zu können... 

 

Parabeln und Ellipsen kann man in dem projektiven System nicht unterscheiden. Hyperbeln sehen einfach nur elegant aus..

 

so weit

Maico

Diesen Beitrag teilen


Link zum Beitrag
vor 8 Minuten schrieb mikesch0815:

Ich nehme mal an, daß die meisten schon wissen was ein kartesisches Koordinatensystem ist. 

 

Ausnahmen bestätigen bekanntlich die Regel -_-

Diesen Beitrag teilen


Link zum Beitrag
vor 28 Minuten schrieb mikesch0815:

Ich nehme mal an, daß die meisten schon wissen was ein kartesisches Koordinatensystem ist. 

 

Ich bin seit gestern abend ja der Meinung, daß ein projektives Koordinatensystem viel abgefahrener ist

 

Na toll, brauchen wir dann neue Banknoten?

20191115_204224-500x427.jpg.de757ddfe07ff3d6150dd89af6c2410a.jpg

Diesen Beitrag teilen


Link zum Beitrag

Ach, die Schweiz.... :P

 

so weit

Maico

Diesen Beitrag teilen


Link zum Beitrag

×
×
  • Neu erstellen...

Mit der Nutzung dieser Website stimmen Sie zu, dass wir Cookies verwenden, um unser Angebot zu personalisieren. Mehr erfahren.